ABSTRACT

Aim: Ear biometrics is key to evaluating various ear deformities, acquire syndromes and reconstructive surgery. This study was aimed at assessing the normative value of the external ear of the Ijaws in Bayelsa State.

Study Design: This is a cross sectional study of 570 subjects [290 male and 280 females] between the ages of 18-45yeras, were recruited for this study.

Method: The anatomical landmarks used for ear biometrics of both sides were
[1] Total Ear Length [TEL]: Uppermost point of the pinna to the lowermost point of lobule
Ear Index [EI] was calculated by dividing ear breadth /ear length multiply by 100.

RESULTS: The results showed that the mean male right total ear length and breadth are 60.27±0.90 and 34.57±0.77, the left total ear length and breadth are 60.59±1.24 and 34.91±1.13 with right and left ear indices as 57.68±1.42 and 57.76±1.00. The mean female right total ear length and breadth are 7.62±0.87 and 30.36±0.77, while the female left total ear length and breadth are 56.93±0.94 and 31.79±0.57 with right and left ear indices as 52.66±1.17 and 55.97±0.89 respectively. The findings showed no significant difference between the male right and left total ear length and breadth, female right and left total ear length and breadth. The Ijaw male right total ear length and breadth tend to be higher than the female counterparts (p<0.05). More so, the Ijaw males possess higher left total ear length and breadth than their females (p<0.05).

Conclusion: Ear biometrics are useful diagnostic tools for congenital malformations, acquired deformities, treatment planning and forensic studies because of the high level of sexual dimorphism.

Key words: Biometrics, Ear index, Sexual Dimorphism.

INTRODUCTION

The external ear is clinically and surgically important as it is related to the vital structures in the neck and that the human ear is the most defining feature of the face [1]. Study on anatomic and aesthetic showed differences between men and women, as well as changes in ear morphology with age. 123 volunteers were randomly selected for this study. The cohort consisted of 89 women with age range 19 to 65 (median 42) and 34 men age range 18 to 61 (median 35). The average total ear height across the entire cohort for both left and right ears was 6.30cm. The average lobular height was 1.88cm. The average lobular width was 1.96cm. As expected, based on head size, significant male/female differences were noted in the distance from the lateral palpebral commissure to both the helical root and insertion of the lobule [2].

All ears are different, and the degree of difference within the bounds of acceptability is remarkable [3]. To that end, the keys to construction, reconstruction, or modification must be observed in order to mold an ear that "looks right." Simply stated, these keys are as follows: The ear is a flap approximately 50 to 60% as wide as it is high, sitting back one ear length (6.5 to
7.5 cm) from the lateral orbital rim, with the top of the ear level with the brow inclined approximately 20 degrees and protruding 1.5 to 2.0 cm from the head. It is composed of five critical elements: concha, helix, antihelix, tragus, and lobule, and parts of lesser importance including antitragus, intertragic notch, and Darwin's tubercle [3]. The subtleties of form and proportion of its features will be revealed by careful observation and study. The use of ear as a tool for human identification started since late 19th century when Alphonse Bertillon utilized it as one of eleven anthropometric measurements for his manual system of identifying individuals [4]. The ear consists of a single piece of fibrocartilage with a complicated relief on the anterior, concave side and a fairly smooth configuration on the posterior, convex side. The fetal development of ear starts shortly after conception and by the 38th day some of its features are recognizable. The ear moves to its definitive position on 56th day and the shape of ear can be recognized on the 70th day. The shape is fixed from then on and never changes from birth until death [5]. The biometrics of ear is a very interesting issue as during crime scene investigation, ear marks and measurements are often used for identification in the absence of valid fingerprints. Ear biometrics can positively identify an individual using comparative analysis of the human ear and its morphology. The dimensions of the pinna have been found to vary among different ethnic groups [6]. [7] also stressed the possibility of using ear characteristics for assessing familial relationships, as the morphology of ears tends to be hereditary. The pattern of the free lobule was proposed by [8], to be a dominant trait with the attached lobule representing the recessive trait. [9] studied the external ear from an anthropological point of view and gathered data from the ears of 500 male and 500 female subjects. [10] worked on 10,000 human ear patterns and found that they all were different. The identity of Verrappan body, a famous sandal wood smuggler from Indian subcontinent was confirmed by his ear morphology and biometrics measurements in 2004 [11]. [12] conducted a survey and confirmed the age, gender and ethnic variations of ears among Koreans.

MATERIALS AND METHODS
Materials used includes camera, weighing balance, notebooks, Sliding vernier caliper.

STUDY TYPE
This is a cross sectional study of 570 subjects [290 male and 280 females] between the ages of 18-45yeras

STUDY LOCATION / DURATION
This research was conducted in specific areas and Ijaw speaking communities in Bayelsa State of Nigeria such as Ekowe, Otuuan, Amasoma, Anyama, Ikibiri, Ikpetiama, Sabageria, Gbaraun. The study lasted from 15th January, 2022 to 10th of June, 2022.

This is a cross sectional study of 570 subjects [290 male and 280 females] between the ages of 18–45yeras, which were recruited for this study. All the measurements were taken twice for precision purpose and recorded in the nearest millimeter (mm) using standardized anthropometric measuring instruments; Sliding vernier caliper.

Methods Of Data Collection Technique
Convenient sampling technique done and data was collected randomly from the Ijaw speaking communities under study.

Height[m]: Measured from the vertex of the skull to the sole of the feet.

Total Ear length[mm]: Uppermost point of the pinna to the lowermost point of lobule.

Ear breadth[mm]: From root of the ear to maximum convexity of the helix

Ear Index was calculated by dividing ear breadth /ear length multiply by 100 according to [1].

Inclusion And Exclusion Criteria

Inclusion Criteria
1. All subjects were Ijaws of Bayelsa extraction.
2. All subjects were physically fit.
3. All subjects were free from ear deformity.

Exclusion Criteria
1. Subject that didn’t meet the above set inclusion criteria.
2. Also any subject that has some form of deformity in the body areas targeted for anthropological assessment that could hinder accurate measurement.

Ethical Measures
Permission to conduct this research was obtained from the authorities [Paramount Rules, Youth Leaders] these communities before the research commenced. The participants were enlightened on the purpose of the research. Verbal informed consent was sought from the volunteered subjects before measurement procedures.

RESULTS
The data collected was analyzed and the results are presented in the tables below.

| TABLE 1: MEAN VALUES OF MALE AND FEMALE EAR PARAMETERS (mm) |
|-------------|-------------|-------------|-------------|
| S/N | PARAMETERS | MALE | FEMALE |
| 1 | HEIGHT [m] | 1.72±0.01 | 1.65±0.01 |
| 2 | RIGHT TOTAL EAR LENGTH | 60.27±0.90 | 57.62±0.87 |
| 3 | RIGHT EAR BREADTH | 34.57±0.77 | 30.36±0.77 |
| 4 | LEFT TOTAL EAR LENGTH | 60.59±1.24 | 56.93±0.94 |
| 5 | LEFT EAR BREADTH | 34.91±1.13 | 31.79±0.57 |

The results from the analyzed data showed mean values of the males’ right ear length and width as 60.27±0.90mm and 34.57±0.77mm. The mean value of the males’ left ear length and width are 60.59±1.24mm and 34.91±1.13mm. The mean value of the females’ right ear length and width are 57.62±0.87mm and 30.36±0.77mm. While the mean values of their left ear length and width are 56.93±0.94mm and 31.79±0.57mm respectively. Indices of both the right and left ears for males and females were calculated and the results indicates that, the mean value of the male right index 57.68±1.42 is and left ear index is 57.76±1.00 and the female right and left indices are 52.66±1.17 and 55.97±0.89 [table 2].

| TABLE 2: MEAN EAR INDICES (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMETER</td>
<td>MALE EAR INDEX</td>
</tr>
<tr>
<td>RIGHT EAR</td>
<td>57.68±1.42</td>
</tr>
<tr>
<td>LEFT EAR</td>
<td>57.76±1.00</td>
</tr>
</tbody>
</table>

| TABLE 3: Z-TEST FOR SIGNIFICANCE |
|----------------|----------------|----------------|----------------|
| S/N | PARAMETER | Right | Left | z- value | Z-CRIT | INFERENCE |
| 1 | Male right and left ear length | 60.27±0.90 | 60.59±1.24 | -0.2061 | 1.96 | P>0.05 |
| 2 | Male right and left ear width | 34.57±0.77 | 34.91±1.13 | -0.2493 | 1.96 | P>0.05 |
| 3 | Female right and left ear length | 57.62±0.87 | 56.93±0.94 | 0.53224 | 1.96 | P>0.05 |
| 4 | Female right and left ear width | 30.36±0.77 | 31.79±0.57 | -1.4957 | 1.96 | P>0.05 |
| 5 | Male and female height | 1.72±0.01 | 1.65±0.01 | 2.93790 | 1.96 | P<0.05** |

Keys: All values = Mean±SEM, **= Significance

Statistical Analysis
The data collected was computed and analyzed using Statistical Package for Social Sciences [SPSS] version 16.0 software. The statistical tools such as Mean, Standard Deviation, Standard Error, Z- Test were used to analyze data. P-value less than (0.05) was considered as significant.

![Fig 1: Ear measurement for volunteered subjects.](image-url)
DISCUSSION
The ear constitutes facial esthetics of humans as such evaluating and differentiating the size has become imperative. The findings from this study have shown that there is no significant difference in the male right and left total ear length and breadth (p>0.05). Similarly, this result also indicates no statistical significant difference in the female right and left total ear length and breadth (p>0.05). In this present study, the male right and left ear indices showed no significant difference (p>0.05) of the Ijaw population. But contrary to this finding, the female right and left ear indices depicts statistically significant difference, where the female left ear index is more than the right ear index (P<0.05). Result of the comparison of the right and left total ear length between males and females of the Ijaws showed significant difference between the two sexes, of which the males tend to have higher value than the females (P<0.05). This result is in tandem with the findings of [14] study of the North West and North East Indians population, and also corroborates the results of [15,16, 17]. The results of the present study also show significantly higher male right and left ear breadth than the female ear breadth (P<0.05). The Ijaw male right ear index was statistically higher than their female counterparts (P<0.05). This finding is in consonant with the study of [18] were the ear indices of both sides in males were significantly higher than the females. Concurrently, the male left ear index and the female left ear index show no significant difference between the two sexes of the Ijaw population (p>0.05). It is ostensibly clear, that genetic characteristic and background played the difference in this result, which is in line with [19] study. Ear dimensions are key diagnostic tool for congenital malformations, acquired deformities and in treatment planning.

CONCLUSION
Knowing the normative dimensional values of the ear morphometric features will help in anthropological and forensic issues. From this study, it has shown that the males of the Ijaw population possess more lengthier and broader ear than their female counterparts. Gender variations must be considered in any ear biometrics measurement in facial and reconstructive surgery.

Acknowledgement: None
Conflict of Interest: None
Source of Funding: None
Ethical Approval: Approved

REFERENCES

DOI: https://doi.org/10.52403/ijhsr.20220735
