Association between Body Mass Index, Age and Blood Pressure among Reproductive Age Undernourished Women Dwelling in Prayagraj District

Nidhi Verma ${ }^{1}$, Archana Chakravorty ${ }^{2}$, Ravi Shankar ${ }^{3}$
${ }^{1}$ Research Scholar, Department of Home Science (Food \& Nutrition) BHU, Varanasi - 221005
${ }^{2}$ Ex. Prof. and Ex. Head, Department of Home Science (Food \& Nutrition), BHU, Varanasi-221005
${ }^{3}$ Professor and Head, Department of Community Medicine Institute of Medical Science, BHU, Varanasi- 221005, Uttar Pradesh, India
Corresponding Author: Nidhi Verma

DOI: https://doi.org/10.52403/ijhsr. 20220347

Abstract

Body Mass Index is a significant health indicator to assessment of undernutrition, over nutrition, obese. According to WHO normal BMI in a healthy person is $18.5-24.4 \mathrm{~kg} / \mathrm{m}^{2}$ below $18.4 \mathrm{~kg} / \mathrm{m}^{2}$ considered as underweight, it is global as well serious health concern problem in Asia and African country. And above $24.4 \mathrm{~kg} / \mathrm{m}^{2}$ considered as overweight/obsess also it is major health risk. Blood pressure is also health indicator parameter. Objectives- To study the BMI and blood pressure Diastolic blood pressure and systolic blood pressure (according to American Heart Association) in undernourished reproductive age women in Prayagraj (Soran and Mauaima block). Research design- cross sectional study was conducted in this study. Methodology- A total no of 310 of female respondents selected in study, conducted January 2019 to December 2020 in Soraon and Mauaima block in Prayagraj Uttar Pradesh. According to respondents weight and height, recorded their BMI to assessment undernutrition in female respondents according to WHO parameter of BMI and recorded DBP and SBP by digital blood pressure monitor. Mean SD, Chi square, was used in statistics. Result- according to their BMI Scale about 55.8% of the study subject were prone (Table no-1) to severely thinness, 29.7% was moderate whereas only 14.5% was found as mild thinness. In case of their Blood Pressure, SBP mean value 1098.98 ± 15.27 and DBP 73.81 ± 10.72 Discussion- in this study positive correlation age and blood pressure whereas negative correlation found to be age and BMI and WHR

Keywords- BMI, Undernutrition, Blood pressure, Systolic Blood Pressure, Diastolic Blood Pressure, Weight, Height

INTRODUCTION

Assessment of nutritional status is one of the most significant derivations of public health strategy to combat malnutrition in form of undernutrition, over nutrition obese and resulting diet related non communicable disease in all manner, BMI is one of them anthropometric important health risk indicator to assess and combat
malnutrition. More than half of the female anemic according to NFHS data. Undernutrition is categorized according to presumptive diagnosis i.e. chronic energy deficiency- grade III considered as severe thinness (BMI-<16.0), chronic energy deficiency grade II moderate thinness (16.017.0), Chronic energy deficiency grade I (17.0-18.5). According to this data the
individual has BMI with <16.0-18.5) more prone to undernutrition

In case of their SBP 76.1% of the study subject were SBP range of 90-120, 14.5% (121-139), $4.5 \% ~(140-159) 3.9 \%$ (<90), 1.0% (160-170) found in given table.

METHODOLOGY

In this study total no of 310 of the female undernourished reproductive age (15-49) respondents selected from Prayagraj district in Uttar Pradesh in two block name Soraon and Mauaima. This study is based on cross sectional study. Ethical approval was taken for ethical committee from Institute of Medical Science Banaras Hindu University. According to Anthropometric measurement height, weight, Waist Hip Ratio, in Physiological dimensions Blood pressure recorded by respondents with digital blood pressure machine with standard protocols was kept in mind, three times BP was recorded for more validity. Weight and height were also recorded. Weight was taken with Virgo weighing scale recorded 3 times to each respondent with minimum clothing to the nearest 0.5 gm. Height was measured by standard scale to the nearest 0.5 cm . BMI was computed as weight $(\mathrm{kg}) /$ height $\left(\mathrm{m}^{2}\right)$ the data was analysis by SPSS version 16 software, mean SD, Chi square test used in this study.

RESULT

Anthropometric measurement
Table no 2.1 Distribution of respondents on the basis of their status of weight, height and BMI and waist hip ratio

Weight	No.	Percentage
$30-34.9$	39	12.6
$35-35.9$	185	59.7
$40-44.9$	86	27.7
Total	310	100.0
Mean weight \pm SD $=37.47 \pm 3.26$, Range $=(30-44)$		

Table 2.1 demonstrated that weight of the respondents between 35-35.9 was $59.7 \%, 27.7 \%$ weight was showed 40-44.9 and only 12.6% of the study subjects were 30-34.9. Mean weight was 37.47 ± 3.26 (weight 30-44).
Height (cm)

<153	75	24.2
$153-156$	173	55.8
>156	62	20.0
Mean height \pm SD 154.54 ± 2.20, Range $=(145-165)$		

Similarly, it was represented that 55.8% rural women were height between $153-156 \mathrm{~cm} .24 .2 \%$ were height <153 and only 20.0% were height >156 and their Mean height \pm SD 154.54 ± 2.20.

According to their height half of the respondents about 55.8% between age of < 153 and 24.2% and 20.0% and their height between 153-156 and > 156 respectively.

BMI		
Mild	45	14.5
Moderate	92	29.7
Severe	173	55.8
Mean BMI \pm SD $=15.68 \pm 1.25$, Range $=(12.49-18.40)$		

WHR

<0.75	154	49.7
$0.75-0.80$	115	37.1
>0.80	41	13.2
Mean WHR \pm SD $=0.75 \pm 0.05$, Range $=(0.62-0.99)$		

In the above table depicted that the highest mean weight SD was recorded among the respondents in the age group 3040 years 37.47 ± 3.26 with regard of height highest mean height SD was recorded among study subjects in the height 145-165 height 154.54 ± 2.20. according to their BMI it was recorded highest mean BMI SD was recorded 15.68 ± 1.25 and highest Mean WHR was recorded $\mathrm{SD}=0.75 \pm 0.05$ in the study subjects respectively.

Weight	Age ${ }^{\text {c25 }}$		25-34		35-45		Total	
	No.	Percentage	No	Percentage	No.	Percentage	No.	Percentage
30-34.9	21	13.3	10	11.5	8	12.3	39	12.6
35-39.9	96	60.8	55	63.2	34	52.3	185	59.7
40-49.9	41	25.9	22	25.3	23	35.4	86	27.7
Total	158	100.0	87	100.0	65	100.0	310	100.0
Mean \pm SD	37.47 ± 3.12		37.29 ± 3.14		37.72 ± 3.74		37.47 ± 3.26	

Nidhi Verma et.al. Association between body mass index, age and blood pressure among reproductive age undernourished women dwelling in Prayagraj district.

Table no 2.2 shows that it was clear that with increasing of age increment in weight also and the mean age value is $37.47 \pm 3.1237 .29 \pm 3.14$ and 37.72 ± 3.74 with the age of $<25,25-34$ and 35-45 respectively. But this difference was found highly insignificant.
Height

<153	36	22.8	12	13.8	27	41.5	75	24.2
$153-156$	89	56.3	55	63.2	29	44.6	173	55.8
>156	33	20.9	20	23.0	9	13.8	62	20.0
Mean \pm SD	154.69 ± 2.28	154.83 ± 2.47	153.77 ± 2.47	154.4 ± 2.40				
$\mathrm{~F}=4.37, \mathrm{P}<0.05$, Significant								
pairs $(1 \mathrm{Vs} 2,3)$								

In case of their height, it was observed maximum age i.e., mean SD 154.69 ± 2.28, 154.83 ± 2.47 and 153.77 ± 2.47 in the similar age found in weight and difference was found statistically significant.

| BMI | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Mild 21 13.3 9 10.3 15 23.1
 45 14.5
 Moderate 45 28.5 25 28.7 22 33.8
 92 29.7
 Severe 92 58.2 53 61.0 28 43.1
 173 55.8
 Mean \pm SD 15.65 ± 1.20 15.55 ± 1.18 15.94 ± 1.41 15.68 ± 1.25
 $\mathrm{~F}=1.97, \mathrm{P}>0.05$ | |

It was emphasized from the above table that Mean SD i.e., $15.65 \pm 1.20,15.55 \pm 1.18$ and 15.94 ± 1.41 in the age of $<25,25-34$, and $35-45$ and difference was fond statistically insignificant.
WHR

<0.75	74	46.8	47	54.0	33	50.8	154	49.7
$0.75-0.80$	58	36.7	32	36.8	25	38.5	115	37.1
>0.80	26	16.5	8	9.2	7	10.7	41	13.2
Mean SD	0.754 ± 0.49	0.750 ± 0.049	0.747 ± 0.046	0.751 ± 0.048				
$\mathrm{~F}=0.52, \mathrm{P}>0.05$								

In case of WHR Mean SD was $0.754 \pm 0.49,0.750 \pm 0.049$ and 0.747 ± 0.046 in same age of above table and difference was found statistically insignificant.

Blood pressure

Table no 3.1 Distribution of respondents as per their Systolic and Diastolic Blood Pressure

Systolic BP			Diastolic BP		
	No.	Percentage		No.	Percentage
<90	12	3.9	<60	17	5.5
$90-120$	236	76.1	$60-80$	215	69.4
$121-139$	45	14.5	$81-89$	52	16.8
$140-159$	14	4.5	$90-99$	21	6.7
$160-179$	03	1.0	$100-109$	5	1.6
≥ 180	-	-	≥ 110	-	-
E					
Total	310	100.0	Total	310	100.0
Mean \pm SD	109.98 ± 15.27	Mean \pm SD	73.81 ± 10.77		
Range	$(85-179)$	Range	$(47-109)$		

From the above table observed that majority of the respondents i.e., 76.1% and 69.4% were SBP and DBP i.e., $90-120$ $\mathrm{mmH}_{\mathrm{g}}$ respectively. Only 1% and 1.6% respondents were SPB and DBP were 160-
$170 \mathrm{mmHg}_{\mathrm{g}}$ respectively suffered from high blood pressure. Whereas average SBP and DBP was 109.98 ± 15.27 and 73.81 ± 10.77 mm Hg among of the study subjects.

Nidhi Verma et.al. Association between body mass index, age and blood pressure among reproductive age undernourished women dwelling in Prayagraj district.

Distribution of systolic BP of respondents on the basis of their age, BMI and WHR

	SBP≤ 120							
Age			121-139		140 and above		Total	
	No.	Percentage	No.	Percentage	No.	Percentage	No.	Percentage
<25	135	85.4	17	10.8	6	3.8	158	100.0
25-34	70	80.5	13	14.9	4	4.6	87	100.0
Total	248	80.0	45	14.5	17	5.5	310	100.0
$\mathrm{X}^{2}=11.23, \mathrm{df}=4, \mathrm{P}<0.05$								

It was reported from the above table that maximum percent of respondent in the age group less than 25 and $25-34$ i.e., 85.4% and 80.5% had SBP less than 120
mm Hg their SBP between $120-139 \mathrm{~mm}$ and statistically difference was found statistically significant.

BMI									
Mild	37	82.2	7	15.6	1	2.2	45	100.0	
Moderate	70	76.1	19	20.6	3	3.3	92	100.0	
Severe	141	81.5	19	11.0	13	7.5	173	100.0	
$\mathrm{X}^{2}=7.16, \mathrm{df}=4, \mathrm{P}>0.05$									

Similarly, it was found from the table, that 82.2% of the respondents were having mild symptoms of undernutrition according to their BMI (Classification of WHO) while only 7.5% were having prone to severe condition of undernutrition.

| WHR | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| <0.75 118 76.6 27 17.5 9 5.9
 154 100.0
 $0.75-0.80$ 98 45.2 11 9.6 6 5.2
 115 100.0
 >0.80 32 78.0 7 17.1 2 4.9
 41 100.0
 $\mathrm{X}^{2}=3.80, \mathrm{df}=4, \mathrm{P}>0.05$ | | | | | | | |

According to WHR 76.6% of the respondents were having <0.75 WHR and only 4.9% were having WHR >0.80 and

Table no 3.2 Distribution of Diastolic blood pressure of respondents on the basis of their age, BMI, and WHR

	DBP							
Age	<80		81-89		90 and above		Total	
	No.	Percentage	No.	Percentage	No.	Percentage	No.	Percentage
<25	124	78.5	26	16.5	8	5.0	158	100.0
25-34	66	75.9	11	12.6	10	11.5	87	100.0
35-45	42	64.6	15	23.1	8	12.3	65	100.0
Total	232	74.8	52	16.8	26	8.4	310	100.0
$\mathrm{X}^{2}=12.91, \mathrm{df}=4, \mathrm{P}<0.05$								

Accordingly to above table 78.5% of the respondents <25 remain 16.5% and 5.0% was having DBP <80, 81-89, and 90 and above. Similarly $75.9 \%, 12.6 \%$, and 11.5% age of $25-34$ was having DBP <80, 81-89, and 90. Furthermore, 64.6%, 23.1\%,
and 12.3% was of the respondents was having DBP <80, 81-89, and 90 it was also observed from the table significantly that relationship between age and DBP was found insignificant.

Mild	28	62.2	11	24.4	6	13.4	45	100.0
Moderate	71	77.7	14	15.2	7	7.6	92	100.0
Severe	133	76.9	27	15.6	13	7.5	173	100.0
$X^{2}=4.51$, df $=4, \mathrm{P}>0.05$								

In addition, according to their BMI 77.7% was moderate BMI according to WHO and only 7.5% was severe BMI and their relationship was found significant.
WHR

0.75	115	74.7	29	18.8	10	6.5	154	100.0
$0.75-0.80$	84	73.0	20	17.4	11	9.6	115	100.0
>0.80	33	80.5	3	7.3	5	12.2	41	100.0
X2 $2=4.38, \mathrm{df}=4, \mathrm{P}>0.05$								

Together with their WHR 74.7\% 18.8% and 6.5% was 0.75 with DBP of <80, $81-89$, and $90.73 .0 \%, 17.4 \%$ and 9.6% was having WHR 0.75-0.80 with DBP <80, 8189 , and 90 along with $80.5 \%, 12.2$, and 7.3% was having DBP <80, 90 and 81-89 and statistical relationship was found statistically significant.

DISCUSSION

Undernutrition is a public health crisis, and it is found that condition is more prevalent among rural reproductive age women. In this present study according their age, relationship between age and weight BMI and WHR was found to be not significant while in case of Height was observed as statistically significant. Similarly in case of Blood pressure both SBP and DBP. The relationship between age and SBP was found to be significant whereas BMI, WHR, was found to be significant along with DBP with age as found statistically significant while BMI WHR was found to be insignificant.

CONCLUSION

In this study we found that blood pressure (SBP and DBP) and age was found positive correlation and negative correlation between age and weight as well as BMI.

Acknowledgement: None
Conflict of Interest: None
Source of Funding: None

REFERENCES

1. Dua Suman, Bhuker Monika, Sharma Pankhuri, Dhall Meenal, Kapoor Satwani Body mass index relates to Blood pressure among adults, north American journal of Medical science February 14 volume 6 issue 289-95
2. Clark N. Sierra, Bennet E. James, Arku E. Raphhael, Hill G. Allen, Fink Gunther et al small area variation and factors associated with Blood pressure and Body Mass Index in adult women in Accra, Ghana: Bayesian spatial analysis of a representative
population survey and census data PLOS medicine November 112021 1-18
3. Linderman C. George, Lu Jiapeng, Lu Yuan, Sun Xin, Xu Wei, Nasir Khurram association of body mass index with Blood pressure among 1.7 million Chinese adults Jama network open vol 4August1420181-11
4. Saeed Summaya Ali Aun et al relationship between BMI and Blood Pressure among students of $3^{\text {rd }}$ year and institute of medical technology (DUHS) medical channel Nov 4 2013 vol 19 5-8.
5. Marinne A.B, Sande der van et al Obesity and undernutrition and Cardiovascular risk factors in rural and urban Gambian communities American journal of public health October 2001 vol 91, 1641-1643
6. Chhabara P., Grover V.L. et al Nutritional status and blood pressure of medical student in Delhi October December ,2006 vol 31 248-250
7. Azupogo Fusta, Abizari Razak Abdul et al Malnutrition, hypertension risk and correlates An analysis of 2014 Ghana Demographic and health Survey Data for 15 - 19 years Adolescent boys and Girls MDPI September 2020 1-16
8. C.L. Young H.L. Kuller et al Longitudinal study of blood pressure: changes and determines from adolescents to middle age American journal of epidemiology, 1993, 138, 973-980
9. Mukherjee Koel, Harashawaradhana et al Body Mass Index and Chronic Energy Deficiency among Adults of Tharu Population, Uttarakhand, India International journal of Biomedical research 2015; 6(07): 475-478.
10. Census of India. Registrar General of India, Govt. of India, 2011.
11. D Tessfamichael, AA Gete et al High Prevalence of Undernutrition among Elderly People in Northwest Ethiopia: A Cross Sectional Study. J Nutrition Health Food Science 2014; 2(4): 1-5.

How to cite this article: Verma N, Chakravorty A, Shankar R. Association between body mass index, age and blood pressure among reproductive age undernourished women dwelling in Prayagraj district. Int J Health Sci Res. 2022; 12(3): 363-367. DOI: https:// doi.org/10.52403/ijhsr. 20220347

