A Review on Vaccination Drive for COVID-19 in India

Yukta¹, R.K Patil², H.C Patil³

¹Pharm.D (Student), Adesh institute of Pharmacy and Biomedical Sciences, Bathinda ²Professor, Department of Pharmacy Practice, Adesh Institute of Pharmacy and Biomedical Sciences, Bathinda ³Professor & Principal, Adesh Institute of Pharmacy and Biomedical Sciences, Bathinda

Corresponding Author: Yukta

ABSTRACT

The Covid-19 pandemic is destructing the whole world rapidly and also results in changing the order of human life. Various strategies and efforts are being applied by health experts to fight against the pandemic. Various vaccines are developed by researchers of different countries. The aim for developing the vaccines is to produce Herd immunity i.e. to resist the spread of SARS-CoV-2 virus. 8-12 years are required for the development of vaccine in normal circumstances but in emergency like Covid-19 pandemic vaccines get ready in 10 months by various methods like viral vector vaccines, mRNA based vaccines, inactivated vaccines. In India only three vaccines i.e. Covaxin, Covishield, and Sputnik-V get the Emergency Use Authorisation (EUA) from the drug controller general of India (DCGI). Vaccines vary in their efficacy that's why only few vaccines get the emergency approval across the globe. These vaccines also show mild to moderate and in some case rare adverse effects.

Key Words – Pandemic, Vaccines, Covid-19, Herd immunity, Adverse effects

INTRODUCTION

The whole world is facing the pandemic viral disease which is caused by the SARS-Cov-2. This COVID-19 disease was first detected in Wuhan, China, in December 2019.^[1] The COVID-19 has emerged as a respiratory disease. Patients who suffered from this novel corona virus has shown symptoms like pneumonia, which may be mild to moderate, also shows symptoms of acute respiratory distress syndrome, septic shock, and multiple organ failure.^[2] Higher incidence of cardiovascular diseases have been reported in patients suffering from COVID-19. Several studies noted that COVID-19 coagulation pathways activates and endothelial cell dysfunction which results in cardiac arrest and cardiomyopathy in patients.^[3] Sectors like travel, tourism, hospitality, economic get adversely affected worldwide due to this pandemic.

Now, there is a need to strengthen the individual's immune system to get protection from COVID-19.^[4] The biggest coronavirus vaccination programme around the globe has launched on January 16,2021 by India. The first priority of vaccination was given to frontline workers of health, education and police. The second priority is given to other people of the country. It is very important for individuals to get vaccinated as soon as possible as this the only way for achieving 'herd immunity' in the country. Two vaccines - Covishield and Covaxin are the part of vaccination programme in India.^[5] Study of evaluation of covid-19 patients affirmed that antibody binder and main bidders attacks on the receptor-binding domain subunit S1. The immunization generates an effective immune response in the human body which is characterized by formation of neutralizing

antibodies, formation of t-cells response and prevention of disease.^[6]

Types of vaccines – as soon as the coronavirus infection found in the world, the researchers started their work in laboratories to make sequences of gene of SARS-CoV-2 virus for identifying the to develop vaccine. Vaccine targets availability is important to develop Herd immunity in the population. Herd immunity refers to the resistance of the transmission of an infectious disease within the population which develops when majority of the population get immune. So, the Herd

immunity is necessary to slow the transmission rate of covid-19 disease. Many vaccines are developed by the scientists across the globe from which only few vaccines get the authorization for emergency use in pandemic. Researchers developed these vaccines through various technologies. The vaccine gets the authorisation after conducting the clinical trials in various phases to evaluate the safety and efficacy of the vaccine. Efficacy limit of 50% has been set by WHO to get the approval for vaccine.^[7,8]

	1	r	
Inactivated virus	Protein subunit	Viral vector	Nucleic acids
Inactivated vaccines obtained	Developed by inducing	Developed by genetically	Immune response is produced
through virus grown in culture and	protein S subunit as a	engineered weakened viruses such	by inducing the genetic
then virus get inactivated	recombinant protein	as rubeola, adenovirus or measles	information i.e. by nucleic
chemically, which releases stably	subunit within the cell	to produce coronavirus proteins in	acids in the form of RNA and
expressed, conformationally native	based systems. Risk is	the body. There are two types of	DNA into human cells and
antigenic epitopes.	development of polarized	vaccines - replicating and non	then copies of virus's spike
It is also obtained by inactivating the	immune system. ^[6,9]	replicating viral vector	proteins are formed in the
virus through ultraviolet rays by	-	vaccines. ^[11,12]	body. ^[11]
laboratory biosafety level 3 (BSL3).			-
It includes steps like expansion,			
titration, inactivation and			
ultracentrifugation of the virus. ^[6,9,10]			
-			

Vaccines across the globe^[6,11,13,14]

Туре	Vaccine	Mechanism	Dose	Storage	Efficacy
Inactivated	CoronaVac	Inactivated CNO2	3µg	2-8°C	50%
virus	(sinovacbiotech,china)	Strain created from vero cells of covid-19	(2 doses in 14		
		virus.	days)		
	BBIBP-CorV	Inactivated HBO2 strain created from	4µg	2-8°C	79%
	(sinopharm 1/2, china)	vero cells of virus.	(2 doses in 21		
			days)		
	BB15V2 /	Inactivated covid-19 virus with a beta-	2 doses in 28	2-8°C	81%
	Covaxin	propiolactone chemical	days		
	(Bharatbiotech, India)		10	0	
Viral vector	Ad26.COV2. S	Adenovirus vector with spike protein of	5×10^{10} viral	2-8°C (3	72%
	(Johnson & Johnson, US)	covid-19 virus.	particles	months);	
			(1 dose)	-20 C(2yrs)	
	ChAdOx1/A ZD1222	Adenovirus vector with spike protein of	5×10^{10} viral	2-8°C (6	82%
	[Covishield]	covid-19 virus.	particles	months)	
	(Oxford/Astra Zeneca, UK)		(2 doses in 28)		
			days)	2 000	0.1 . 60 /
	Sputnik V / Gam-CovidVac	Adenovirus vector with spike protein of	10 ¹¹ viral	2-8°C (6	91.6%
	(Gamaleya, Russia)	covid-19 virus.	particles	months);	
			(2 doses in 21)	-20 °C	
D	NUNC 0070		days)	(2yrs)	0.604
Protein	NVXCov23/3	Recombinant full length, perfusion S	$5 \mu g + 50 \mu g$	2-8°C (6	86%
SUDUNIT	(Novovax, US)		(2 doses)	months)	0.40/
MKNA ·	mRNA12/3	Encoded mRNA with spike protein in	100µg	-25 to -15°C;	94%
vaccine	(moderna, US)	lipid nanoparticle.	(2 doses in 28)	2-8°C for 30	
	DNT1(2)2	Encountered in their annexation with	days)	days	050/
	Bin 1102D2	Encapsulated in lipid hanoparticles with	$30\mu g$	$-80\ t0\ -60\ C;$	95%
	(Plizer-Biointech, US)	mkinA and spike protein.	(2 doses in 21	2-8°C for 5	
	CVrCaV	Stabled and northward langth of S mustain	uays)	2 PC for 6	unten orum
	(ClaveSmithVline	of views	$12\mu g$	2-0 C IOF 0	unknown
	(GiaxoSmithKline,	or virus.	(2 doses in 28	months	
	Germany)		uays)		

Vaccines in India

A huge vaccination drive in India has been started on 16th January 2021 with two vaccines Covishield and Covaxin but on 1st May 2021 India has received the first lot of third vaccine i.e. Sputnik V from Russia. The drugs controller general of India has approved these vaccines for public use. The government of India has decided to vaccinate the population above 18yrs of age 2021. Vaccination by august is contraindicated in pediatric age group, pregnant and lactating women but can be extended after ensuring post marketing surveillance results of the vaccines.^[15,16]

1. Covishield vaccine – This is a viral vector vaccine which is manufactured by the Serum institute of India but developed by Astra Zeneca with Oxford university, UK and labelled as AZD1222.Immune response is generated by using the recombinant technology which is used to deliver the adenoviral vector (ChAdOx1) from containing glycoprotein chimpanzees antigen of spike protein of Covid-19 virus. ^[7,15] 0.5 ml dose of vaccine is administered in people and it requires 2°C - 8°C storage requirements. Studies of interim analysis shows that efficacy of vaccine after 1st dose is 62% and after 2nd dose it is near about 90%. In some studies it is noticed that after 1st dose at 14th day the T-cell response is high and at 28th day the anti-spike IgG antibody response is high so the 2nd dose for boosting effect is given between 4 to 8 weeks of first dose after which neutralising antibody effect is generated in the body.^[8,14,17]

2. **Covaxin vaccine**– Bharat Biotech manufactured this vaccine in collaboration with ICMR (Indian Council of Medical Research). The immune system from this vaccine is generated by inactivated whole virion of SARS-CoV-2.^[15,17] It is labelled as BBV152. Bharat Biotech received the isolated and sequenced virus strain from ICMR-NIV (National Institute of Virology) develop Covaxin which is then to

formulated with TLR 7/8 agonist molecule absorbed to alhydroxiquim-II (algel IMDG). 0.5 ml dose is administered intramusculary in each dose and it requires 2°C - 8°C storage. Th1-biased temperature for response was reported in first phase clinical trial of BBV152 vaccine and it is the first vaccine which induced this response and in 2nd phase trial the T-cell memory response was induced. Due to strong production of mediated and humoral antibody cell response, it is hypothesised that immune response may last for 12 months after the 2nd dose.^[18,19]According to ICMR the multiple variants and double mutant strain of SARS-CoV-2 virus has been found in India gets neutralised by Covaxin.^[20]

3. Sputnik-V Vaccine - Gamaleya National Center of Epidemiology and Microbiology in Russia has developed Sputnik-V Covid-19 Vaccine which was recently approved by India for its population.^[21] Sputnik-V is a viral vector vaccine based on heterologous recombinant adenovirus (rAd), which contains the combination of two viral vectors i.e. rAd type 26 (rAd26)18 and rAd type 5 (rAd5).rAd5 and rAd26 comprises a gene of spike protein S of Covid-19 virus and it becomes rAd5-S and rAd26-S. rAd26-S is given as first dose and rAd5-S is given as second dose.^[22,23,24] It requires the 21 days interval between first dose and second dose and 0.5ml is administered intramuscularly into the deltoid muscle .in each dose. Single immunisation of viral vector vaccines like Covishield and sputnikmay induce cellular and humoral V immunity both, that's why these vaccines are allowed in pandemic as a emergency prophylaxis tool. In addition of double immunisation produce long lasting immunity. The interim analysis shows that vaccine's efficacy is about 91.6% against covid-19.^[21,22] Earlier in the month of April the study of Argentina shows that people had those antibodies in their body after the completion of both the doses of Sputnik-V which are effective against the UK variant B.1.1.7 variant.^[21,25]

Local side effect	Systemic side effect	Rare side effects
Redness at injection site	Fever	Appendicitis
Swelling at injection site	Headache	Thromboembolism
Pain in arm for 3 days	Chills	Myocardial infarction
Rashes on arm	Vomiting	Cerebrovascular accident
Itching on arm for 3 days	Diarrhoea	Shoulder injury
	Body pain	
	Lymphadenopathy	
	Joint pain	
	Bell's palsy (sudden weakness in the muscles of half of the face)	
	Myalgia	
	Dizziness	
	Vertigo	
	Palpitation	
	Chest pain for 1 day	

Adverse effects of vaccines -

Thromboembolism a rare side effect of Covishield-

Manv European countries had banned the Covishield (AZD1222) vaccine for their population because cases of thromboembolism (formation of blood clot) had reported after vaccination. 5 million people had received the ChAdOx1-nCoV-19 in European area by march 2021 but 30 cases from this had been reported of thromboembolism.^[26,27] In early march Germany had reported 9 cases of thrombocytopenia and intra cranial venous sinus thrombosis in recipients of Oxford-AstraZeneca vaccine against the covid-19 pandemic.^[28] In UK 20 million people had received Covishield vaccine and among these 79 individual had been reported with thromboembolism with thrombocytopenia and with 19 causalities. The study of new England journal of medicine also shows that there are 11 patients of median age of 36 yrs had developed thromboembolism between 5 to 16 days after vaccination. The researchers had tested their blood samples and blood samples showed the presence of antibodies against platelet factor 4 (PF4) with no previous exposure of heparin but researchers cannot concluded the study yet antibodies whether that these are autoantibodies which are produced by vaccination as an inflammatory stimulus or vaccine produced these antibodies which cross react with platelet factor 4 and platelets. After the observations researchers suggested that thromboembolism with thrombocytopenia due to Oxford AstraZeneca vaccine is a rare immune response which is similar with heparin induced thrombocytopenia i.e. a rare side effect due to heparin. On April 7, 2021 the Expert Haematology Panel has UK's of suggested the use intravenous immunoglobulin, avoiding platelet transfusions. and non-heparin blood a management therapy for thinners as thrombosis and thrombocytopenia induced after vaccination.^[29,30]

CONCLUSION

Vaccination is the only way to achieve protective level of Herd immunity against COVID-19 infection. Vaccination should be received by everyone whether those who have suffered from COVID-19 in past or those who hasn't suffered from it yet. People who are suffering from any underlying disease like diabetes, liver disease, heart disease etc. must get vaccinated to fight against COVID-19 People infection. can receive any from the vaccination available three vaccination in India as clinical trials and various studies shows that all three vaccines which are available in India are safe have enough efficacy. It is recommended that anyone if develops the serious side effects which is very rare after vaccination should seek prompt medical advice.

Acknowledgement: None

Conflict of Interest: None

Source of Funding: None

REFERENCES

- Wu Yeshun., Xu Xolin., Chen Zijun., et al., 2020. Nervous system involvement after infection with COVID-19 and other coronaviruses. Sciencedirect2020.03.30.https://doi.org/10.1 016/j.bbi.2020.03.031
- 2. Cao Xuetao, 2020. COVID-19: immunopathology and its implications for therapy. Nature reviews immunology ,2020.04.09.
- R. MehraMandeep., M.D., S. Sapan., et al., 2020. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. N Engl J Med 2020; 382:e102 DOI: 10.1056/NEJMoa2007621
- Pharmacovigilance of COVID-19 vaccines in the context of Nepal: an assessment based on early adverse drug reaction reports. Journal of Pharmaceutical Health Services Research, 2021, Vol XX, 1–3. doi:10.1093/jphsr/rmab016
- 5. Post Vaccination Symptoms among the Beneficieries of Covid Vaccine in Dadra & Nagar Haveli. International Journal Dental and Medical Sciences Research. Volume 3, Issue 1, Jan-Feb 2021. www.ijdmsrjournal.com DOI: 10.35629/5252-030112151218
- Tauba.S., Widyati., et al., 2021 A Review of Covid-19 Vaccines: What needs to be known and its expected effect on the human population? *Preprints* 2021, 2021040468https://www.preprints.org/manu script/202104.0468/v1
- kakar A., Gogia A., et al., COVID vaccines: A step towards ending the pandemic. Current Medicine Research and Practice 2021; 11(1): 23-30.https://cutt.ly/sbPHcAe
- Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, *et al.* Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020;396:467-78.
- Creech, C. B., Walker, S. C., & Samuels, R. J. (2021). SARS-CoV-2 Vaccines. JAMA.https://doi.org/10.1001/jama.2021.31 99
- Delrue, I., Verzele, D., Madder, A., &Nauwynck, H. J. (2012). Inactivated virus vaccines from chemistry to prophylaxis: Merits, risks and challenges. In Expert

Review of Vaccines (Vol. 11, Issue 6, pp. 695–719). https://doi.org/10.1586/erv.12.38

- 11. Callaway, E. (2020). The race for coronavirus vaccines: a graphical guide. Nature, 580(7805), 576–577. https://doi.org/10.1038/d41586-020-01221y
- Callaway, E., &Mallapaty, S. (2021). Novavax offers first evidence that COVID vaccines protect people against variants. Nature, 590(7844), 17. https://doi.org/10.1038/d41586-021-00268-9
- 13. Ella, R., Vadrevu, K. M., et.al., 2021. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a doubleblind, randomised, phase 1 trial. The Lancet Infectious Diseases. https://doi.org/10.1016/s1473-3099(20)30942-7
- 14. Voysey, M., Clemens, et.al., 2021. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet, 397(10269), 99–111. https://doi.org/10.1016/S0140-6736(20)32661-1
- 15. Athavale AV., The Covid-19 Vaccine. Journal of Advanced Research and Medical Science Technology 2021; 8(1):29-35. https://doi.org/10.24321/2394.6539.202103
- India Approves Russia's Sputnik-V Covid-19 Vaccine. https://thewire.in/health/indiaapproves-russias-sputnik-v-covid-19vaccine
- 17. Vinod N., Stages in COVID-19 vaccine development: The Nemesis, the Hubris and the Elpis. Int J ClinVirol 2020; 4(1): 126-135.
- Zhang YJ, Zeng G, Pan HX, Li CG, Kan B, Hu YL, *et al.* Immunogenicity and safety of a SARS CoV 2 inactivated vaccine in healthy adults aged 18 59 years: Report of the randomized, double blind, and placebo controlled phase 2 clinical trial. medRxiv 2020 Aug; 20161216. https://doi.org/10.1101/2020.07.31.2016121 6
- 19. Serum Institute Registers Its Covid-19 Vaccine Trial, 21 August, 2020. Available from: https://www.hindustantimes.com. [Last accessed on 2021 Jan 09].
- 20. ICMR says Covaxin effective in neutralising UK strain, double mutant

variant.21 april, 2021. https://www.hindustantimes.com/

- Lawton.G., Sputnik V Vaccine Goes Global. New Scientist, Science direct 2021; 250 : 10-11. https://doi.org/10.1016/S0262-4079(21)00671-0
- 22. Logunov DY., et al., Safety and efficacy of rAd5 vector-based an rAd26 and heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet ; 2021; February 397: 671-681. https://doi.org/10.1016/S0140-6736(21)00234-8
- 23. Dolzhikova IV., Zubkova OV., Tukhvatulin AI., et al., Safety and immunogenicity of GamEvac-Combi, a heterologous VSV- and Ad5-vectored Ebola vaccine: an open phase I/II trial in healthy adults in Russia.*Hum VaccinImmunother*. 2017; 13: 613-620
- 24. Logunov DY., Dolzhikova IV., Zubkova OV., et al., Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. *Lancet.* 2020; 396: 887-897. https://doi.org/10.1016/S0140-6736(20)31866-3
- 25. Ikegame S., et al., Qualitatively distinct modes of Sputnik V vaccine-neutralization escape by SARS-CoV-2 Spike variants

.medRxivapril2021.https://doi.org/10.1101/2 021.03.31.21254660

- 26. Ostergaard DS., Schmidt M., et al., Thromboembolism and the Oxford– AstraZeneca COVID-19 vaccine: sideeffect or coincidence? Lancet. 2021; 397: 1441-1443. https://doi.org/10.1016/S0140-6736(21)00762-5
- 27. Wise J. Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots. BMJ 2021; 372: n699.
- Wolf EM., Luz B., et al., Thrombocytopenia and Intracranial Venous Sinus Thrombosis after "COVID-19 Vaccine AstraZeneca" Exposure. J. Clin. Med. 2021, 10(8), 1599; https://doi.org/10.3390/jcm10081599
- 29. Wise J. Covid-19: Rare immune response may cause clots after AstraZeneca vaccine, say researchers. BMJ 2021; 373: n954. https://doi.org/10.1136/bmj.n954
- 30. Mahase E. AstraZeneca vaccine: Blood clots are "extremely rare" and benefits outweigh risks, regulators conclude. *BMJ*2021;373:n931. doi:10.1136/bmj.n931 pmid:33832929

How to cite this article: Yukta, Patil RK, Patil HC. A review on vaccination drive for COVID-19 in India. *Int J Health Sci Res.* 2021; 11(8):137-142. DOI: *https://doi.org/10.52403/ ijhsr.20210820*
